1,000 research outputs found

    Theoretical modelling and meteorological analysis for the AASE mission

    Get PDF
    Providing real time constituent data analysis and potential vorticity computations in support of the Airborne Arctic Stratospheric Experiment (AASE) is discussed. National Meteorological Center (NMC) meteorological data and potential vorticity computations derived from NMC data are projected onto aircraft coordinates and provided to the investigators in real time. Balloon and satellite constituent data are composited into modified Lagrangian mean coordinates. Various measurements are intercompared, trends deduced and reconstructions of constituent fields performed

    Residual circulations calculated from satellite data: Their relations to observed temperature and ozone distributions

    Get PDF
    Monthly mean residual circulations were calculated from eight years of satellite data. The diabatic circulation is usually found to give a good approximation to the residual circulation, but this is not always the case. In particular, an example is shown at 60 deg S and 30 mbar where the diabatic and residual circulations show very different annual variations. Correlations between the vertical component of the residual circulation and temperature and ozone were computed. The computations indicate that yearly variations of temperatures in the tropics are under radiative control, except during stratospheric warmings. Interannual variations in seasonal mean temperatures are shown to be under dynamical control everywhere. Correlations between seasonal means of the vertical component of the residual circulation and ozone mixing ratios are consistent with what would be expected from the ozone variations being due to differences in the ozone transport, although transport effects cannot easily be distinguished from photochemical effects above the altitude of the ozone mixing ratio peak. Finally, variations in total ozone are examined in comparison with residual circulation variations. A one to two month phase lag is seen in the annual variation in the total ozone at 60 deg N with respect to the maximum downward residual motions. This phase lag is greater at 60 deg N than at 60 deg S. There is evidence at 60 deg S of a greater downward trend in the mean zonal ozone maxima than there is in the minima. A decreasing trend in the maximum descending motion is seen to accompany the ozone trend at 60 deg S

    Ozone and Tracer Transport Variations in the Summer Northern Hemisphere Stratosphere

    Get PDF
    Constituent observations from the Upper Atmosphere Research Satellite (UARS) in combination with estimates of the residual circulation are used to examine the transport and chemical budgets of HF, CH4 and O3 in the summer Northern Hemisphere. Budget calculations of HF, CH4 and O3 show that the transport tendency due to the residual circulation increases in magnitude and is largely opposed by eddy motions through the summer months. Ozone budget analyses show that between 100 and 31 hPa, the magnitudes of the mean circulation and eddy transport terms increase through the summer months, producing tendencies that are factors of 2 to 3 times larger than the observed ozone change in the stratosphere. Chemical loss dominates the observed ozone decrease only at the highest latitudes, poleward of about 70°N. A comparison of observations from the Total Ozone Mapping Spectrometer with UARS-calculated total ozone suggests that poleward of 50°N, between 35% and 55% of the seasonal ozone decline during the summer occurs at altitudes below 100 hPa. The overall uncertainties, associated primarily with calculations of the residual circulation and eddy transport, are relatively large, and thus prevent accurate and useful constraints on the ozone chemical rate in the lower stratosphere

    Stratospheric General Circulation with Chemistry Model (SGCCM)

    Get PDF
    In the past two years constituent transport and chemistry experiments have been performed using both simple single constituent models and more complex reservoir species models. Winds for these experiments have been taken from the data assimilation effort, Stratospheric Data Analysis System (STRATAN)

    The Panchromatic Hubble Andromeda Treasury I: Bright UV Stars in the Bulge of M31

    Full text link
    As part of the Panchromatic Hubble Andromeda Treasury (PHAT) multi-cycle program, we observed a 12' \times 6.5' area of the bulge of M31 with the WFC3/UVIS filters F275W and F336W. From these data we have assembled a sample of \sim4000 UV-bright, old stars, vastly larger than previously available. We use updated Padova stellar evolutionary tracks to classify these hot stars into three classes: Post-AGB stars (P-AGB), Post-Early AGB (PE-AGB) stars and AGB-manqu\'e stars. P-AGB stars are the end result of the asymptotic giant branch (AGB) phase and are expected in a wide range of stellar populations, whereas PE-AGB and AGB-manqu\'e (together referred to as the hot post-horizontal branch; HP-HB) stars are the result of insufficient envelope masses to allow a full AGB phase, and are expected to be particularly prominent at high helium or {\alpha} abundances when the mass loss on the RGB is high. Our data support previous claims that most UV-bright sources in the bulge are likely hot (extreme) horizontal branch stars (EHB) and their progeny. We construct the first radial profiles of these stellar populations, and show that they are highly centrally concentrated, even more so than the integrated UV or optical light. However, we find that this UV-bright population does not dominate the total UV luminosity at any radius, as we are detecting only the progeny of the EHB stars that are the likely source of the UVX. We calculate that only a few percent of MS stars in the central bulge can have gone through the HP-HB phase and that this percentage decreases strongly with distance from the center. We also find that the surface density of hot UV-bright stars has the same radial variation as that of low-mass X-ray binaries. We discuss age, metallicity, and abundance variations as possible explanations for the observed radial variation in the UV-bright population.Comment: Accepted for publication in Ap

    Discovery of a Gas-Rich Companion to the Extremely Metal-Poor Galaxy DDO 68

    Get PDF
    We present HI spectral-line imaging of the extremely metal-poor galaxy DDO 68. This system has a nebular oxygen abundance of only 3% Z_{\odot}, making it one of the most metal-deficient galaxies known in the local volume. Surprisingly, DDO 68 is a relatively massive and luminous galaxy for its metal content, making it a significant outlier in the mass-metallicity and luminosity-metallicity relationships. The origin of such a low oxygen abundance in DDO 68 presents a challenge for models of the chemical evolution of galaxies. One possible solution to this problem is the infall of pristine neutral gas, potentially initiated during a gravitational interaction. Using archival HI spectral-line imaging obtained with the Karl G. Jansky Very Large Array, we have discovered a previously unknown companion of DDO 68. This low-mass (MHI_{\rm HI} == 2.8×\times107^{7} M_{\odot}), recently star-forming (SFRFUV_{\rm FUV} == 1.4×\times103^{-3} M_{\odot} yr1^{-1}, SFRHα_{\rm H\alpha} << 7×\times105^{-5} M_{\odot} yr1^{-1}) companion has the same systemic velocity as DDO 68 (Vsys_{\rm sys} == 506 km s1^{-1}; D == 12.74±\pm0.27 Mpc) and is located at a projected distance of 42 kpc. New HI maps obtained with the 100m Robert C. Byrd Green Bank Telescope provide evidence that DDO 68 and this companion are gravitationally interacting at the present time. Low surface brightness HI gas forms a bridge between these objects.Comment: Accepted for publication in the Astrophysical Journal Letter

    The Panchromatic Hubble Andromeda Treasury

    Get PDF
    The Panchromatic Hubble Andromeda Treasury (PHAT) is an on-going HST Multicycle Treasury program to image ~1/3 of M31's star forming disk in 6 filters, from the UV to the NIR. The full survey will resolve the galaxy into more than 100 million stars with projected radii from 0-20 kpc over a contiguous 0.5 square degree area in 828 orbits, producing imaging in the F275W and F336W filters with WFC3/UVIS, F475W and F814W with ACS/WFC, and F110W and F160W with WFC3/IR. The resulting wavelength coverage gives excellent constraints on stellar temperature, bolometric luminosity, and extinction for most spectral types. The photometry reaches SNR=4 at F275W=25.1, F336W=24.9, F475W=27.9, F814W=27.1, F110W=25.5, and F160W=24.6 for single pointings in the uncrowded outer disk; however, the optical and NIR data are crowding limited, and the deepest reliable magnitudes are up to 5 magnitudes brighter in the inner bulge. All pointings are dithered and produce Nyquist-sampled images in F475W, F814W, and F160W. We describe the observing strategy, photometry, astrometry, and data products, along with extensive tests of photometric stability, crowding errors, spatially-dependent photometric biases, and telescope pointing control. We report on initial fits to the structure of M31's disk, derived from the density of RGB stars, in a way that is independent of the assumed M/L and is robust to variations in dust extinction. These fits also show that the 10 kpc ring is not just a region of enhanced recent star formation, but is instead a dynamical structure containing a significant overdensity of stars with ages >1 Gyr. (Abridged)Comment: 48 pages including 22 pages of figures. Accepted to the Astrophysical Journal Supplements. Some figures slightly degraded to reduce submission siz
    corecore